

# 2020-2021 Curriculum Guide for Doctor of Philosophy degree program with a specialization in AGROECOSYSTEM SCIENCE

The whole-system approach to sustainable agriculture and food systems in the interdisciplinary area of agroecosystem sciences has research links in ecology, culture, economics, and society. This program is part of the Ohio State Environmental Sciences Graduate Program (ESGP).

Students admitted to the PhD degree program are assigned a faculty advisor who will provide guidance throughout the program. Students are encouraged to get to know their advisor and meet with him/her at least twice each semester. This document serves as a resource to be used by the student and the advisor in planning a program with a specialization in AES, but is not inclusive of all important degree, college(s), and university requirements. All students are expected to be familiar with the ESGP Handbook (https://esgp.osu.edu/sites/default/files/2020-08/esgp\_handbook\_2020-2021.pdf) and with The Graduate School Handbook (available at http://www.gradsch.ohio-state.edu/).

## **PROGRAM OF STUDY**

The PhD-Agroecosystem Science curriculum consists of a minimum of 80 credits.

| ESGP Require | d Courses | (21 credits) |
|--------------|-----------|--------------|
|--------------|-----------|--------------|

| ENVSCI 7899              | ESGP Seminar                    | 1, 1, 1 (3 credits total) |
|--------------------------|---------------------------------|---------------------------|
| Biological               | Select from courses in Appendix | 6 credits                 |
| Science Physical         | Select from courses in Appendix | 6 credits                 |
| Social Sciences & Policy | Select from courses in Appendix | 6 credits                 |

#### Agroecosystem Sciences Required Courses (5 credits)

| Seminar       |                              |                        |
|---------------|------------------------------|------------------------|
| Entomol 7890/ | Agroecosystems Special Topic | 1, 1 (2 credits total) |

| ENR8890.03/     |
|-----------------|
| EEOB 8896.04    |
| Skills Courses: |

GEOG 5210 Fundamentals of Geographic Information Systems 3 credits

## **Electives (6 credits)**

| Liectives (o ciedits)      |                                                             |           |
|----------------------------|-------------------------------------------------------------|-----------|
| With advisor's guidance an | nd approval, select from the following list of ESGP courses |           |
| AEDECON 6120               | Applied Quantitative Methods II                             | 4 credits |
| AEDECON 7120               | Advanced Quantitative Methods II                            | 3 credits |
| AEDECON 7130               | Advanced Quantitative Methods III                           | 3 credits |
| CIVILEN 5420               | Remote Sensing of Environment                               | 3 credits |
| ENVENG 7217                | Applied Mathematical Ecology                                | 3 credits |
| FABENG 3510                | Introduction to Biological Engineering                      | 4 credits |
|                            |                                                             |           |

## Research Credits (48 credits)

Pre- and Post-Candidacy research hours in advisor's home department 48 credits minimum

# **Grade Policy:**

In addition to the general Graduate School requirements of a cumulative grade point average of 3.0 or higher, students must meet specific college policies regarding grades in courses.

# **Support Staff**

## **Environmental Sciences Graduate Program**

(614) 292-9762/Smith Laboratory/174 W. 18th Ave/Columbus, Ohio/43210/esgp.osu.e

<sup>\*\*\*\*\*</sup>Questions regarding the student's program of study should be directed to their advisor\*\*\*\*

## **Appendix**

## **Core and Elective Courses in Biological Sciences**

The objective of this core course area is to ensure that students are familiar with the diversity and functioning of organisms and the interactions among species and between organisms and the environment. Because the environmental sciences focus on the relationships between living organisms and their environment, the basic principles of ecology and a solid understanding of ecosystems structure and function is the focus of the ESGP core. This understanding can be gained through coursework that focuses on a particular taxon or a particular kind of ecosystem but must be broadly applicable to any environment.

#### **Environment and Natural Resources**

| ENR 5225        | Ecosystems Modeling                                      | 3 credits |    |
|-----------------|----------------------------------------------------------|-----------|----|
| ENR 5250.01 and | Wetland Ecology Restoration and Wetland Field Laboratory | 4 credits | AU |
| 5250.02         |                                                          |           |    |
| ENR 5263        | Biology of Soil Ecosystems                               | 3 credits | SP |

## **Evolution, Ecology and Organismal Biology**

| EEOB 5470 | Community and Ecosystem Ecology | 3 credits | SP |  |
|-----------|---------------------------------|-----------|----|--|
|-----------|---------------------------------|-----------|----|--|

## **Horticulture and Crop Science**

| HCS 5602 | The Ecology of Agriculture | 3 credits | AU |
|----------|----------------------------|-----------|----|

## **Core and Elective Courses in Physical Sciences**

The objective of this core area is to provide an understanding of physical structure and processes in which ecosystems must function. Physical structure includes soil, water, air, geological media, climate, nutrients, and contaminants. Physical science processes include movement of "abiotic" matter and energy through ecosystems. Core courses must (1) study fundamental physical, hydrological, chemical, or biogeochemical processes and (2) study and emphasize the effects of physical structure and processes on ecosystem biotic components and function and the interactions between the biotic and abiotic components of the ecosystem.

#### **Environment and Natural Resources**

| ENR 5222/FABENG  | Ecological Engineering and Science | 4 credits | SP |
|------------------|------------------------------------|-----------|----|
| 5310/ENVENG 5310 |                                    |           |    |

## Food, Agriculture and Biological Engineering

| FABENG 5310/ENR<br>5222/ENVENG 5180 | Ecological Engineering and Science | 4 credits | SP |
|-------------------------------------|------------------------------------|-----------|----|
| FABENG 5320                         | Agroecosystems                     | 3 credits | SP |

## **Earth Science**

| Hydrogeology 4 credit | credits AU |
|-----------------------|------------|
|-----------------------|------------|

#### Core and Elective Courses in Social Sciences and Policy

The objective of the social science core is to provide an understanding of concepts related to the study of human society and/or individuals and their relationships to the structure and function of the ecosystem(s) of which they are a part. Methodology includes a range of approaches, both qualitative and quantitative. Core social science courses must engage social science in a combined theoretical and/or applied study of a physical, cultural, regulatory, or economic relationship between humans and the natural and physical environment.

## **Environment and Natural Resources**

| 1 | ENR 8350     | Ecosystem Management Policy               | 3 credits | AU |
|---|--------------|-------------------------------------------|-----------|----|
| I | RURLSOC 5530 | Sociology of Agriculture and Food Systems | 3 credits | AU |
| I | RURLSOC 7560 | Environmental Sociology                   | 3 credits | SP |

#### Agricultural, Environmental and Developmental Economics

| AED 5330 | Benefit-Cost Analysis | 3 credits | AU |
|----------|-----------------------|-----------|----|
|          |                       |           | i  |

# **City and Regional Planning**

| CRPLAN 6410 | Planning for Sustainable Development | 3 credits | AU |
|-------------|--------------------------------------|-----------|----|
|-------------|--------------------------------------|-----------|----|

Nick Basta Steve Culman Casey Hoy Reed Johnson Rattan Lal Jiyoung Lee Berry Lyons Andy May Mark Moritz Larry Phelan Virginia Rich Mark Sulc