2021-2022 Curriculum Guide for Doctor of Philosophy degree program with a specialization in ENVIRONMENTAL PUBLIC HEALTH

The Doctor of Philosophy (PhD) degree in Environmental Sciences requires a significant program of study and research that qualifies the recipient to conduct independent high-quality research and communicate complex information in environmental public health. Students pursuing the PhD degree complete didactic, laboratory and research courses. In addition, PhD students must successfully complete and pass a PhD Qualifying Exam, a PhD Candidacy Exam, Dissertation and Final Examination. Due to the expanded depth and scope of content and research, it takes a minimum of four years to complete the program requirements to earn the PhD degree. Graduates are prepared for teaching/research faculty positions in higher education and other positions in public and private sectors. This program is part of the Ohio State Environmental Sciences Graduate Program (ESGP).

Students are assigned a faculty advisor who will provide guidance throughout the program. Students are encouraged to get to know their advisor and meet with him/her at least twice each semester. This document serves as a resource to be used by the student and the advisor in planning a program with a specialization in EPH, but is not inclusive of all important degree, college(s), and university requirements. All students are expected to be familiar with the ESGP Handbook https://esgp.osu.edu/sites/esgp.osu.edu/files/esgp-handbook-text-fnal-revision-ss-gb-updated-final-2014.12.2.pdf, the College of Public Health (CPH) Graduate Student Handbook: http://cph.osu.edu/students/graduate/handbooks, the Graduate School Handbook http://www.gradsch.ohio-state.edu/ and CPH competencies: http://go.osu.edu/cphcompetencies.

PROGRAM OF STUDY

The PhD-Environmental Public Health curriculum consists of a minimum of 81 credits.

ESGP Required Courses (21 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVSCI 7899</td>
<td>ESGP Seminar</td>
<td>1, 1, 1 (3 credits total)</td>
</tr>
<tr>
<td>Biological Core</td>
<td>PUBHEHS 6320: Global Health & Environmental Microbiology</td>
<td>3 credits</td>
</tr>
<tr>
<td>Biological Core</td>
<td>Select from courses in Appendix II</td>
<td>3 credits</td>
</tr>
<tr>
<td>Physical Science Core</td>
<td>Select from courses in Appendix II</td>
<td>6 credits</td>
</tr>
<tr>
<td>Social Sciences Core</td>
<td>Select from courses in Appendix II</td>
<td>6 credits</td>
</tr>
</tbody>
</table>

Public Health Required Courses (24 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBHLTH 6010</td>
<td>Essentials of Public Health</td>
<td>3 credits</td>
</tr>
<tr>
<td>PUBHBIO 6210</td>
<td>Design & Analysis of Studies in the Health Sciences I</td>
<td>3 credits</td>
</tr>
<tr>
<td>PUBHEPI 6410</td>
<td>Principles of Epidemiology</td>
<td>3 credits</td>
</tr>
<tr>
<td>PUBHEHS 6310</td>
<td>Principles of Environmental Health Science</td>
<td>3 credits</td>
</tr>
<tr>
<td>PUBHEHS 5315</td>
<td>Principles of Toxicology</td>
<td>3 credits</td>
</tr>
<tr>
<td>Research Methods Courses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUBHBIO 6211</td>
<td>Design and Analysis of Studies in the Health Sciences II</td>
<td>3 credits</td>
</tr>
<tr>
<td>PUBHEPI 7411</td>
<td>Environmental Epidemiology</td>
<td>3 credits</td>
</tr>
<tr>
<td>Select one from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUBHBIO 7220</td>
<td>Applied Logistic Regression</td>
<td>3 credits</td>
</tr>
<tr>
<td>PUBHBIO 7225</td>
<td>Survey Sampling Methods</td>
<td>3 credits</td>
</tr>
<tr>
<td>PUBHBIO 7240</td>
<td>Applied Statistical Analysis with Missing Data</td>
<td>3 credits</td>
</tr>
</tbody>
</table>

Electives (9 credits)

With advisor’s guidance and approval, select from list of approved ESGP courses in Appendix II and/or from list of CPH-EPH course in Appendix I.

*****Questions regarding the student’s program of study should be directed to their advisor*****
Dissertation Research (27 credits)

Pre-Candidacy and Post-Candidacy Research Hours (8998 and 8999) are to be taken in the advisor’s home department/division

Grade Policy:
In addition to the general Graduate School requirements of a cumulative grade point average of 3.0 or higher, students must meet specific college policies regarding grades in courses.

Support Staff:

Environmental Sciences Graduate Program
(614) 292-9762/Smith Laboratory/174 W. 18th Ave/Columbus, Ohio/43210/ esgp.osu.edu

College of Public Health - Office of Academic Programs and Student Services (OAPSS)
OAPSS staff are available to provide assistance with College, Graduate School and University policies and procedures.
(614) 292-8350/100 Cunz Hall/1841 Neil Ave/Columbus, Ohio/ 43210/ cph.osu.edu

Appendix I List of Approved CPH EPH Elective Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBHEHS 6345</td>
<td>Climate Change and Human Health</td>
<td>3 credits</td>
<td>AU, SP</td>
</tr>
<tr>
<td>PUBHEHS 5340</td>
<td>Air Contaminants and Public Health</td>
<td>3 credits</td>
<td></td>
</tr>
<tr>
<td>PUBHEHS 5345</td>
<td>Infectious Disease Modeling in Humans & Animals</td>
<td>3 credits</td>
<td></td>
</tr>
<tr>
<td>PUBHEHS 6390</td>
<td>Major Human Diseases in Global Public Health</td>
<td>3 credits</td>
<td>SP</td>
</tr>
<tr>
<td>PUBHEHS 7380</td>
<td>Exposure Science Monitoring Techniques</td>
<td>3 credits</td>
<td>AU</td>
</tr>
<tr>
<td>PUBHEHS 8340</td>
<td>Molecular Techniques for Environmental Health Sciences</td>
<td>3 credits</td>
<td>SP</td>
</tr>
<tr>
<td>PUBHEPI 7411</td>
<td>Environmental Epidemiology</td>
<td>3 credits</td>
<td></td>
</tr>
</tbody>
</table>

*****Questions regarding the student’s program of study should be directed to their advisor*****
Appendix II ESGP Core Courses in Biological Science

The objective of this core course area is to ensure that students are familiar with the diversity and functioning of organisms and the interactions among species and between organisms and the environment. Because the environmental sciences focus on the relationships between living organisms and their environment, the basic principles of ecology and a solid understanding of ecosystems structure and function is the focus of the ESGP core. This understanding can be gained through coursework that focuses on a particular taxon or a particular kind of ecosystem but must be broadly applicable to any environment.

Agricultural Systems Management

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASM 5786</td>
<td>Environmental Issues in East Asia</td>
<td>3</td>
<td>SP</td>
</tr>
</tbody>
</table>

Environment and Natural Resources

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENR 5250.01 and S250.02</td>
<td>Wetland Ecology Restoration and Wetland Field Laboratory</td>
<td>4</td>
<td>AU</td>
</tr>
<tr>
<td>ENR 5263</td>
<td>Biology of Soil Ecosystems</td>
<td>3</td>
<td>SP</td>
</tr>
<tr>
<td>ENR 5270</td>
<td>Soil Fertility</td>
<td>3</td>
<td>AU</td>
</tr>
<tr>
<td>ENR 5560</td>
<td>Rehabilitation/Restoration of Ecosystems</td>
<td>2</td>
<td>AU</td>
</tr>
<tr>
<td>ENR 6610</td>
<td>Soil and Environmental Biochemistry</td>
<td>2</td>
<td>SP</td>
</tr>
<tr>
<td>ENR 7333</td>
<td>Successional Dynamics of Forests</td>
<td>3</td>
<td>SP</td>
</tr>
</tbody>
</table>

Entomology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTMLGY 6410</td>
<td>Insect Ecology and Evolutionary Processes</td>
<td>3</td>
<td>AU</td>
</tr>
<tr>
<td>ENTMLGY 6704</td>
<td>System Analysis, from Molecules to Ecosystems</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Environmental Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVEN 5217</td>
<td>Applied Mathematical Ecology</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Evolution, Ecology and Organismal Biology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEOB 5420</td>
<td>Aquatic Ecosystems – Ecology of Inland Waters</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>EEOB 5470</td>
<td>Community and Ecosystem Ecology</td>
<td>3</td>
<td>SP</td>
</tr>
<tr>
<td>EEOB 6210</td>
<td>Ecotoxicology</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Horticulture and Crop Science

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCS 5602</td>
<td>The Ecology of Agriculture</td>
<td>3</td>
<td>AU</td>
</tr>
</tbody>
</table>

Microbiology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICRO 5155</td>
<td>Environmental Microbiology</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Public Health

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBHEHS 5315</td>
<td>Principles of Toxicology</td>
<td>3</td>
<td>SP</td>
</tr>
<tr>
<td>PUBHEHS 5335</td>
<td>Ecology of Infectious Diseases</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PUBHEHS 6320</td>
<td>Global Health and Environmental Microbiology</td>
<td>3</td>
<td>AU</td>
</tr>
<tr>
<td>PUBHEHS 7360</td>
<td>Water Contamination: Sources and Health Impact</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PUBHEHS 7365</td>
<td>Environmental and Human Health Risk Assessment</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PUBHEHS 7375</td>
<td>Quantitative Microbial Risk Analysis Modeling</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

*****Questions regarding the student’s program of study should be directed to their advisor*****
Appendix II ESGP Core Courses in Physical Science and Engineering

The objective of this core area is to provide an understanding of physical structure and processes in which ecosystems must function. Physical structure includes soil, water, air, geological media, climate, nutrients, and contaminants. Physical science processes include movement of “abiotic” matter and energy through ecosystems. Core courses must (1) study fundamental physical, hydrological, chemical, or biogeochemical processes and (2) study and emphasize the effects of physical structure and processes on ecosystem biotic components and function and the interactions between the biotic and abiotic components of the ecosystem.

Environment and Natural Resources

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENR 5310/FABENG 5310/ENVENG 5310</td>
<td>Ecological Engineering and Science</td>
<td>4</td>
<td>SP</td>
</tr>
<tr>
<td>ENR 5260</td>
<td>Soil Landscapes: Morphology, Genesis and Classification</td>
<td>3</td>
<td>AU</td>
</tr>
<tr>
<td>ENR 5261</td>
<td>Environmental Soil Physics</td>
<td>3</td>
<td>SP</td>
</tr>
<tr>
<td>ENR 5262</td>
<td>Soil Chemical Processes and Environmental Quality</td>
<td>3</td>
<td>AU</td>
</tr>
<tr>
<td>ENR 5268</td>
<td>Soils and Climate Change</td>
<td>2</td>
<td>SP</td>
</tr>
<tr>
<td>ENR 5273</td>
<td>Environment Fate and Impact of Contaminants in Soil and Water</td>
<td>3</td>
<td>SP</td>
</tr>
</tbody>
</table>

Food, Agriculture and Biological Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>FABENG 5310/ENR 5310/ENVENG 5310</td>
<td>Ecological Engineering and Science</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>FABENG 5320</td>
<td>Agroecosystems</td>
<td>3</td>
<td>SP</td>
</tr>
<tr>
<td>FABENG 5550</td>
<td>Design of Sustainable Waste Management Systems</td>
<td>3</td>
<td>SP</td>
</tr>
</tbody>
</table>

Geography

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 5900</td>
<td>Weather, Climate and Global Warming</td>
<td>3</td>
<td>SP</td>
</tr>
</tbody>
</table>

Earth Science

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARTHSCI 5621</td>
<td>Introduction to Geochemistry</td>
<td>3</td>
<td>AU</td>
</tr>
<tr>
<td>EARTHSCI 5651</td>
<td>Hydrogeology</td>
<td>4</td>
<td>AU</td>
</tr>
<tr>
<td>EARTHSCI 5718</td>
<td>Aquatic Geochemistry</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Civil and Environmental Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVENG 5195/PUBHEHS 5395</td>
<td>Engineering Design for Environmental Health</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIVENV 5130</td>
<td>Applied Hydrology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENVENG 5110</td>
<td>Environmental Engineering Bioprocesses</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENVENG 5120</td>
<td>Bioremediation of Groundwater and Soil</td>
<td>3</td>
<td>Odd</td>
</tr>
<tr>
<td>ENVENG 5140</td>
<td>Air Quality Engineering</td>
<td>3</td>
<td>SP</td>
</tr>
<tr>
<td>ENVENG 5310/FABENG 5310/ENVENG 5310</td>
<td>Ecological Engineering and Science</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ENVENG 5410</td>
<td>Hazardous Waste Management and Remediation</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ENVENG 5430</td>
<td>Principles of Risk Assessment</td>
<td>3</td>
<td>SP</td>
</tr>
<tr>
<td>ENVENG 6100</td>
<td>Environmental Engineering Analytical Methods</td>
<td>3</td>
<td>SP</td>
</tr>
<tr>
<td>ENVENG 6220</td>
<td>Data Analysis in Environmental Engineering</td>
<td>3</td>
<td>AU</td>
</tr>
</tbody>
</table>

Chemical and Biomolecular Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBE 5771</td>
<td>Air Pollution</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 6550</td>
<td>Atmospheric Chemistry</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Public Health

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBHEHS 5330</td>
<td>Environmental Epigenetics</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

*****Questions regarding the student’s program of study should be directed to their advisor*****
Appendix II ESGP Core Courses in Social Sciences and Policy

The objective of the social science core is to provide an understanding of concepts related to the study of human society and/or individuals and their relationships to the structure and function of the ecosystem(s) of which they are a part. Methodology includes a range of approaches, both qualitative and quantitative. Core social science courses must engage social science in a combined theoretical and/or applied study of a physical, cultural, regulatory, or economic relationship between humans and the natural and physical environment.

Environment and Natural Resources

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Offering Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENR 5325</td>
<td>Public Forest and Lands Policy</td>
<td>3</td>
<td>Even years</td>
</tr>
<tr>
<td>ENR 5451</td>
<td>Water Law</td>
<td>3</td>
<td>SP</td>
</tr>
<tr>
<td>ENR 7400</td>
<td>Communicating Environmental Risk</td>
<td>3</td>
<td>SP</td>
</tr>
<tr>
<td>ENR 7500/CRP 7500</td>
<td>Resolving Social Conflict</td>
<td>3</td>
<td>AU</td>
</tr>
<tr>
<td>ENR 7520</td>
<td>Environmental Science and Law</td>
<td>3</td>
<td>AU</td>
</tr>
<tr>
<td>ENR 7380</td>
<td>Climate and Society</td>
<td>3</td>
<td>AU</td>
</tr>
<tr>
<td>ENR 8350</td>
<td>Ecosystem Management Policy</td>
<td>3</td>
<td>AU</td>
</tr>
<tr>
<td>RURLSOC 5530</td>
<td>Sociology of Agriculture and Food Systems</td>
<td>3</td>
<td>AU</td>
</tr>
<tr>
<td>RURLSOC 7550</td>
<td>Rural Community Development in Theory and Practice</td>
<td>3</td>
<td>SP</td>
</tr>
<tr>
<td>RURLSOC 7560</td>
<td>Environmental Sociology</td>
<td>3</td>
<td>SP</td>
</tr>
</tbody>
</table>

Agricultural, Environmental and Developmental Economics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Offering Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>AED 5330</td>
<td>Benefit-Cost Analysis</td>
<td>3</td>
<td>AU</td>
</tr>
<tr>
<td>AEDECON 6300/ENR 5310</td>
<td>Environmental and Resources Economics</td>
<td>3</td>
<td>SP</td>
</tr>
</tbody>
</table>

Public Affairs

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Offering Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBAFRS 5600/ENVENG 5600</td>
<td>Science, Engineering and Public Policy</td>
<td>3</td>
<td>SP</td>
</tr>
<tr>
<td>PUBAFRS 6000</td>
<td>Public Policy Formulation and Implementation</td>
<td>4</td>
<td>SP</td>
</tr>
<tr>
<td>PUBAFRS 6080</td>
<td>Public Affairs Program Evaluation</td>
<td>4</td>
<td>SP</td>
</tr>
</tbody>
</table>

City and Regional Planning

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Offering Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRPLAN 6300</td>
<td>Law and Planning I: Land Use</td>
<td>3</td>
<td>SP</td>
</tr>
<tr>
<td>CRPLAN 6310</td>
<td>Law and Planning II: Environment and Society</td>
<td>3</td>
<td>SP</td>
</tr>
<tr>
<td>CRPLAN 6400</td>
<td>Site Planning and Development</td>
<td>4</td>
<td>AU</td>
</tr>
<tr>
<td>CRPLAN 6410</td>
<td>Planning for Sustainable Development</td>
<td>3</td>
<td>AU</td>
</tr>
<tr>
<td>CRPLAN 7270</td>
<td>Environmental and Energy Modeling</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CRPLAN 7500/ENR 7500</td>
<td>Resolving Social Conflict</td>
<td>3</td>
<td>AU</td>
</tr>
</tbody>
</table>

Anthropology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTHROP 5614</td>
<td>Ethnobotany</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ANTHROP 5623</td>
<td>Environmental Anthropology</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Law

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Offering Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAW 8309</td>
<td>Environmental Law</td>
<td>2-4</td>
<td>AU</td>
</tr>
<tr>
<td>LAW 8311</td>
<td>Climate Change Law</td>
<td>3</td>
<td>SP</td>
</tr>
</tbody>
</table>

Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVENG 6600</td>
<td>Assessment for Human Rights and Sustainability</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

*****Questions regarding the student's program of study should be directed to their advisor*****